Optimal Trajectory Design for Interception and Deflection of near Earth Objects
نویسنده
چکیده
Many asteroids and comets orbit the inner solar system; among them Near Earth Objects (NEOs) are those celestial bodies for which the orbit lies close, and sometimes crosses, the Earth’s orbit. Over the last decades the impact hazard they pose to the Earth has generated heated discussions on the required measures to react to such a scenario. The aim of the research presented in this dissertation is to develop methodologies for the trajectory design of interception and deflection missions to Near Earth Objects. The displacement, following a deflection manoeuvre, of the asteroid at the minimum orbit intersection distance with the Earth is expressed by means of a simple and general formulation, which exploits the relative motion equations and Gauss’ equations. The variation of the orbital elements achieved by any impulsive or low-thrust action on the threatening body is derived through a semi-analytical approach, whose accuracy is extensively shown. This formulation allows the analysis of the optimal direction of the deflection manoeuvre to maximise the achievable deviation. The search for optimal opportunities for mitigation missions is done through a global optimisation approach. The transfer trajectory, modelled through preliminary design techniques, is integrated with the deflection model. In this way, the mission planning can be performed by optimising different contrasting criteria, such as the mass at launch, the warning time, and the total deflection. A set of Pareto fronts is computed for different deflection strategies and considering various asteroid mitigation scenarios. Each Pareto set represents a number of mission opportunities, over a wide domain of launch windows and design parameters. A first set of results focuses on impulsive deflection missions, to a selected group of potentially hazardous asteroids; the analysis shows that the ideal optimal direction of the deflection manoeuvre cannot always be achieved when the transfer trajectory is integrated with the deflection phase. A second set of results
منابع مشابه
Evidence-Based Robust Design of Deflection Actions for Near Earth Objects
This paper presents a novel approach to the robust design of deflection actions for Near Earth Objects (NEO). In particular, the case of deflection by means of Solar-pumped Laser ablation is studied here in detail. The basic idea behind Laser ablation is that of inducing a sublimation of the NEO surface, which produces a low thrust thereby slowly deviating the asteroid from its initial Earth th...
متن کاملOrbital simulations on the deflection of Near Earth Objects by directed energy
Laser ablation of a Near Earth Object (NEO) on a collision course with Earth produces a cloud of ejecta which exerts a thrust on the NEO, deflecting it from its original trajectory. The DE-STAR system provides thrust by illuminating an Earth-targeting asteroid or comet from afar with a stand-off system consisting of a large phased-array laser in Earth orbit. A much smaller version of the same s...
متن کاملOrbital Simulations on Deflecting Near-Earth Objects by Directed Energy
Laser ablation of a near-Earth object (NEO) on a collision course with Earth produces a cloud of ejecta that exerts a thrust on the NEO, deflecting it from its original trajectory. Ablation may be performed from afar by illuminating an Earth-targeting asteroid or comet with a stand-off “DE-STAR” system consisting of a large phased-array laser in Earth orbit. Alternatively, a much smaller stand...
متن کاملOptimization of Interplanetary Trajectories for Impulsive and Continuous Asteroid Deflection
The chaotic dynamic of near earth objects and our limited knowledge on the asteroid population makes it impossible to predict the next impact of an asteroidwith our planet. The collision at Jupiter of the comet Shoemaker– Levy 9, the more recent discovery of the asteroid 99442 Apophis, and other similar events, have stimulated the discussion on our capabilities of deflecting an asteroid in coll...
متن کاملTrajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion
Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...
متن کامل